

JD1550-XFP-LC.S80

1550nm XFP Single-Mode for 10GbE/FC/SDH/SONET Duplex XFP Transceiver RoHS6 Compliant

Features

- Supports 9.95Gb/s to 11.3Gb/s Bit Rates
- ◆ Hot-pluggable XFP Footprint
- Maximum Link Length up to 80km
- Temperature-Stabilized EML transmitter
- Duplex LC Connector
- Built-in Digital Diagnostic Functions
- Case Operating Temperature:

Standard: 0°C to 70°C

• No external clock required

Applications

- OC192/ STM 64
- ◆ 10GBASE-ZR/ZW 10G Ethernet
- Fiber Channel
- ♦ P1L1-2D2
- ITU-T G.709

Ordering Information

Part No.	Data Rate	Laser	Fiber Type	Distance	Optical Interface	Temp.
JD1550-XFP-LC.S80	Up to11.3Gbps	EML	SMF	80km	LC	Standard

Regulatory Compliance

Feature	Standard	Performance
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883G Method 3015.7	Class 1C (>1000 V)
Electrostatic Discharge to the enclosure	EN 55024:1998+A1+A2 IEC-61000-4-2 GR-1089-CORE	Compatible with standards
Electromagnetic Interference (EMI)	FCC Part 15 Class B EN55022:2006 CISPR 22B :2006 VCCI Class B	Compatible with standards Noise frequency range: 30MHz to 6GHz. Good system EMI design practice required to achieve Class B margins. System margins are dependent on customer host board and chassis design.
Immunity	EN 55024:1998+A1+A2 IEC 61000-4-3	Compatible with standards. 1KHz sine-wave, 80% AM, from 80MHz to 1GHz. No effect on transmitter/receiver performance is detectable between these limits.
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11 EN (IEC) 60825-1:2007 EN (IEC) 60825-2:2004+A1	CDRH compliant and Class I laser product. TüV Certificate No. 50135086
Component Recognition	UL and CUL EN60950-1:2006	UL file E317337 TüV Certificate No. 50135086 (CB scheme)
RoHS6	2002/95/EC 4.1&4.2 2005/747/EC 5&7&13	Compliant with standards ^{*note1}

In light of item 5 in RoHS exemption list of RoHS Directive 2002/95/EC, Item 5: Lead in glass of cathode ray tubes, electronic components and fluorescent tubes.

In light of item 13 in RoHS exemption list of RoHS Directive 2005/747/EC, Item13: Lead and cadmium in optical and filter glass. The three exemptions are being concerned for our transceivers, because our transceivers use glass, which may contain Pb, for components such as lenses, windows, isolators, and other electronic components.

Product Description

The JD1550-XFP-LC.S80 single mode transceiver is small form factor pluggable module for duplex optical data communications such as 10GBASE-ZR/ZW defined by IEEE 802.3ae. It is with the XFP 30-pin connector to allow hot plug capability.

This module is designed for single mode fiber and operates at a nominal wavelength of 1550 nm. The transmitter section uses a 1550nm EML, which is class 1 laser compliant according to International Safety Standard IEC-60825.

The receiver section uses an integrated InGaAs detector preamplifier (IDP) mounted in an optical header and a limiting post-amplifier IC.

Absolute Maximum Ratings*note2

Parameter	Symbol	Min	Тур	Max	Unit
Maximum Supply Voltage 1	Vcc3	-0.5	-	4.0	V
Maximum Supply Voltage 2	Vcc5	-0.5	-	6.0	V
Storage Temperature	Ts	-40	-	85	°C

Note2: Exceeding any one of these values may destroy the device permanently.

Recommended Operating Condition

Parameter	Symbol	Min	Тур	Max	Units
Supply Voltage 1	Vcc3	3.13	3.3	3.45	V
Supply Voltage 2	Vcc5	4.75	5	5.25	V
Case Operating Temperature	Тс	0	-	70	°C

Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
Main Supply Voltage	Vcc5	4.75	-	5.25	V
Supply Voltage #2	Vcc3	3.13	-	3.45	V
Supply Current – Vcc5 supply	lcc5	-	-	370	mA
Supply Current – Vcc3 supply	lcc3	-	-	500	mA
Module Total Power	Р	-	-	3.5	W
Transmitter					
Input Differential Impedance*Note3	Rin	-	100	-	Ω
Differential Data Input Swing	Vin,pp	120	-	820	mV
Transmit Disable Voltage	V _D	2.0	-	Vcc	V
Transmit Enable Voltage	V _{EN}	GND	-	GND+ 0.8	V
Transmit Disable Assert Time		-	-	10	us
Receiver					
Differential Data Output	Voutinn	340	650	850	mV
Swing* ^{Note3}	vout,pp	340	000		

XFP Series

Rise Time (20– 80%)	tr	-	-	38	ps
Fall Time (20– 80%)	tf	-	-	38	ps
LOS Fault* ^{Note4}	V _{LOS fault}	Vcc - 0.5	-	VccHOST	V
LOS Normal* ^{Note4}	V _{LOS norm}	GND	-	GND+0.5	V

Note3: After internal AC coupling

Note4.:Loss of signal is open collector. Logic 0 indicates normal operation; logic 1 indicates no signal detected.

Optical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
Transmitter					
Output Power @ 9/125 SMF	Pout	0	-	+4	dBm
Optical Wavelength	$\lambda_{\rm C}$	1530	-	1565	nm
Spectral Width (-20dB)	Δλ	-	-	1	nm
Optical Extinction Ratio@10.3Gb/s	ER	9	-	-	dB
Average Launch Power of OFF	D			20	dPm
Transmitter	FOFF	-	-	-30	abm
TX Jitter Generation (Peak-to-Peak)	T _{Xj}	-	-	0.1	UI
TX Jitter Generation (RMS)	T _{XjRMS}	-	-	0.01	UI
Relative Intensity Noise	RIN	-	-	-130	dB/Hz
Eye Mask		Compliant with ITU-T G.691			
	Receive	r			
Receiver Sensitivity@ 9.95Gb/s ^{*Note5}	Pmin	-	-	-24	dBm
Receiver Sensitivity @ 10.3Gb/s*Note5	Pmin	-	-	-24	dBm
Overload Power	Pmax	-7	-	-	dBm
Optical Center Wavelength	λ _C	1270	1550	1600	nm
Receiver Reflectance	Rf	-	-	-27	dB
LOS De-Assert	LOSDEASS	-	-	-26	dBm
LOS Assert	LOS _{ASS}	-38	-	-	dBm
LOS Hysteresis		0.5	-	-	dB

Note5: Back to back, measured with a PRBS 2³¹-1 test pattern and ER=9dB, BER 1X10⁻¹².

Pin Descriptions

Pin	Symbol	Name/Description
1	GND	Module Ground
2	VEE5	Optional –5.2 Power Supply – Not required
3	Mod-Desel	Module De-select; When held low allows the module to respond to
		2-wire serial interface commands
4	Interrupt	Interrupt (bar); Indicates presence of an important condition which can
		be read over the serial 2-wire interface
5	TX_DIS	Transmitter Disable; Transmitter laser source turned off
6	VCC5	+5 Power Supply
7	GND	Module Ground
8	VCC3	+3.3V Power Supply

XFP Series

9	VCC3	+3.3V Power Supply			
10	SCL	Serial 2-wire interface clock line			
11	SDA	Serial 2-wire interface data line			
12	Mod_Abs	Module Absent; Indicates module is not present. Grounded in the			
		module.			
13	Mod_NR	Module Not Ready;			
14	RX_LOS	Receiver Loss of Signal indicator			
15	GND	Module Ground			
16	GND	Module Ground			
17	RD-	Receiver inverted data output			
18	RD+	Receiver non-inverted data output			
19	GND	Module Ground			
20	VCC2	+1.8V Power Supply – Not required			
		Power Down; When high, places the module in the low power			
		stand-by mode and on the falling edge of P_Down initiates a module			
21	P_Down/RST	reset			
		Reset; The falling edge initiates a complete reset of the module			
		including the 2-wire serial interface, equivalent to a power cycle.			
22	VCC2	+1.8V Power Supply – Not required			
23	GND	Module Ground			
24	RefCLK+	Reference Clock non-inverted input, AC coupled on the host board –			
		Not required			
25	RefCLK-	Reference Clock inverted input, AC coupled on the host board – Not			
		required			
26	GND	Module Ground			
27	GND	Module Ground			
28	TD-	Transmitter inverted data input			
29	TD+	Transmitter non-inverted data input			
30	GND	ND Module Ground			

Pin arrangement

Pin Numbers and Name

Digital Diagnostic Functions

JD1550-XFP-LC.S80 Small Form Factor 10Gbps (XFP) transceivers are compliant with the current XFP Multi-Source Agreement (MSA) Specification Rev 4.5.

As defined by the XFP MSA, our XFP transceivers provide digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters:

- Transceiver temperature
- Laser bias current
- Transmitted optical power
- Received optical power
- Transceiver supply voltage

It also provides a sophisticated system of alarm and warning flags, which may be used to alert end-users when particular operating parameters are outside of a factory-set normal range.

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller inside the transceiver, which is accessed through the 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL pin) is generated by the host. The positive edge clocks data into the XFP transceiver into those segments of its memory map that are not write-protected. The negative edge clocks data from the XFP transceiver. The serial data signal (SDA pin) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. The 2-wire serial interface provides sequential or random access to the 8 bit

parameters, addressed from 000h to the maximum address of the memory.

Recommended Host Board Power Supply Circuit

Recommended High-Speed Interface Circuit

Mechanical Specifications

DCI's XFP transceivers are compliant with the dimensions defined by the XFP Multi-Sourcing Agreement (MSA).

Eye Safety

This single-mode transceiver is a Class 1 laser product. It complies with IEC-60825 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated within the specified temperature and voltage limits. The optical ports of the module shall be terminated with an optical connector or with a dust plug.