

JD1550-SFP-LC.S40 Series

1550nm SFP+ single-Mode Transceiver, With Diagnostic Monitoring Duplex SFP+ Transceiver, RoHS 6 Compliant 0.6~10Gb/s CPRI/OBSAI

Features

- 1550nm EML Transmitter
- Distance up to 40km over SMF
- Single 3.3V Power supply and TTL Logic Interface
- Duplex LC Connector Interface
- Hot Pluggable
- Power Dissipation < 1.5 W (Typical < 1W)
- Dispersion Tolerance 800ps/nm
- Operating Case Temperature
 Standard: 0°C~+70°C
 Industrial:-40°C~85°C
- Compliant with SFF-8431 MSA
- Compliant with SFF-8432 MSA
- Compliant with SFF-8472 MSA

Applications

- ♦ 10GBASE-ER/EW
- ♦ 8G/10G FC
- OBSAI rates 6.144 Gb/s, 3.072 Gb/s,
 1.536 Gb/s, 0.768Gb/s
- CPRI rates 10.138Gb/s ,9.830
 Gb/s,7.373Gb/s, 6.144 Gb/s, 4.915

Gb/s, 2.458 Gb/s, 1.229 Gb/s,

- 0.614Gb/s
- Other optical links

Ordering information

Part No.	Data Rate	Laser	Temp.	Distance	Optical Interface	CDR	DDMI
JD1550-SFP-LC.S40* Note1	0.6Gbps to 11.3Gbps	1550nm EML	Standard	40km	LC	NO	YES
JD1550-SFP-LC.S40(WT)	0.6Gbps to 11.3Gbps	1550nm EML	Industrial	40km	LC	NO	YES

Note1: Standard version

*The product image only for reference purpose.

Regulatory Compliance*Note2

Product Certificate	Certificate Number	Applicable Standard	
		EN 60950-1:2006+A11+A1+A12+A2	
TUV	R50135086	EN 60825-1:2014	
		EN 60825-2:2004+A1+A2	
111	F047007	UL 60950-1	
UL	E317337	CSA C22.2 No. 60950-1-07	
		EN 55022:2010	
EMCCE	AE 50285805 0001	EN 55024:2010	
FCC	WTF14F0514417E	47 CFR PART 15 OCT., 2013	
FDA /		CDRH 1040.10	
ROHS	/	2011/65/EU	

Note2: The above certificate number updated to June 2014, because some certificate will be updated every year, such as FCC, FDA and ROHS. For the latest certification information, please check with Data Controls Inc..

Product Description

The JD1550-SFP-LC.S40 series single mode transceiver is small form factor pluggable module for duplex optical data communications up to 10G. It is with the SFP+ 20-pin connector to allow hot plug capability.

This module is designed for single mode fiber and operates at a nominal wavelength of 1550 nm. The transmitter section uses a 1550nm EML, which is class 1 laser compliant according to International Safety Standard IEC-60825.

The receiver section uses an integrated InGaAs detector preamplifier (IDP) mounted in an optical header and a limiting post-amplifier IC.

Absolute Maximum Ratings* Note3

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Supply Voltage	Vcc	-0.5	3.6	V

Note3: Exceeding any one of these values may destroy the device permanently.

Recommended Operating Conditions

Parameter	Symbol		Min.	Typical	Max.	Unit
Operating Case Temperature	Та	Standard	0		+70	°C
Operating Case Temperature	TC	Industrial	-40		85	°C
Power Supply Voltage	Vcc		3.15	3.3	3.45	V
Power Supply Current	lcc				455	mA
Surge Current	I _{Surge}				+30	mA
Baud Rate	JD15	50-SFP-LC.S40	0.6		11.3	Gbit/s

Performance Specifications – Electrical

Parameter	Symbol	Min.	Тур.	Мах	Unit	Notes
CML Inputs(Differential)	Vin	150		1200	mVpp	AC coupled inputs
Input Impedance (Differential)	Zin	85	100	115	ohms	Rin > 100 kohms @ DC
Tx_DISABLE Input Voltage – High		2		Vcc+0.3	V	
Tx_DISABLE Input Voltage – Low		0		0.8	V	
Tx_FAULT Output Voltage – High		2		Vcc+0.3	V	lo = 400µA; Host Vcc
Tx_FAULT Output Voltage – Low		0		0.5	V	lo = -4.0mA
		Rec	eiver			
CML Outputs (Differential)	Vout	350		700	mVpp	AC coupled outputs
Output Impedance (Differential)	Zout	85	100	115	ohms	
Rx_LOS Output Voltage – High		2		Vcc+0.3	V	lo = 400µA; Host Vcc
Rx_LOS Output Voltage – Low		0		0.8	V	lo = -4.0 mA
	VoH	2.5			V	With Serial ID
	VoL	0		0.5	V	

Performance Specifications – Optical

Parameter	Symbol	Min.	Typical	Max.	Unit
9µm Core Diameter SMF			40		km
Transı	mitter				
Center Wavelength	λc	1530	1550	1565	nm
Spectral Width (-20dB)	Δλ			1	nm
Side Mode Suppression Ratio	SMSR	30			dB
Average Output Power*note4	Pout, AVG	-4.7	-1	4	dBm
Optical Modulation Amplitude	Pout,OMA	1			dBm
Extinction Ratio	ER	3.5			dB
Transmitter and Dispersion Penalty	TDP			2	dB
Average Power of OFF Transmitter				-30	dBm
Relative Intensity Noise	RIN			-128	dB/Hz
TX Disable Assert Time	t_off			10	us

Receiver									
Center Wavelength	λc	1530		1565	nm				
Sensitivity *note5	Pmin			-15.8	dBm				
Receiver Overload	PMAX	-1			dBm				
LOS De-Assert	LOSD			-16.5	dBm				
LOS Assert	LOSA	-30			dBm				

Note4: Output is coupled into a 9/125um SMF. The -4.7dBm is reference IEEE 802.3ae, the typical value is -1dBm. Note5: Minimum average optical power measured at the BER less than 1E-12, back to back. The measure pattern is PRBS 2³¹-1.

SFP+ Transceiver Electrical Pad Layout

Pin Function Definitions

Pin Num.	Name	FUNCTION	Plug Sea.	Notes
1	VeeT	Transmitter Ground	1	Note 5
2	TX Fault	Transmitter Fault Indication	3	Note 1
3	TX Disable	Transmitter Disable	3	Note 2, Module disables on high or open
4	SDA	Module Definition 2	3	2-wire Serial Interface Data Line.
5	SCL	Module Definition 1	3	2-wire Serial Interface Clock.
6	MOD_ABS	Module Definition 0	3	Note 3
7	RS0	RX Rate Select (LVTTL).	3	No Function Implement.
8	LOS	Loss of Signal	3	Note 4
9	RS1	TX Rate Select (LVTTL).	1	No Function Implement.
10	VeeR	Receiver Ground	1	Note 5
11	VeeR	Receiver Ground	1	Note 5
12	RD-	Inv. Received Data Out	3	Note 6
13	RD+	Received Data Out	3	Note 6
14	VeeR	Receiver Ground	1	Note 5
15	VccR	Receiver Power	2	3.3V ± 5%, Note 7
16	VccT	Transmitter Power	2	3.3V ± 5%, Note 7
17	VeeT	Transmitter Ground	1	Note 5
18	TD+	Transmit Data In	3	Note 8
19	TD-	Inv. Transmit Data In	3	Note 8
20	VeeT	Transmitter Ground	1	Note 5

Notes:

1) TX Fault is an open collector/drain output, which should be pulled up with a $4.7K - 10K\Omega$ resistor on the host board. Pull up voltage between 2.0V and VccT/R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

2) TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7K - 10 \text{ K}\Omega$ resistor. Its states are:

Low (0 - 0.8V): Transmitter on

(>0.8, < 2.0V): Undefined

High (2.0 - 3.465V): Transmitter Disabled

Open: Transmitter Disabled

3) Module Absent, connected to VeeT or VeeR in the module.

🖉 Data Controls

4) LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a $4.7K - 10K\Omega$ resistor. Pull up voltage between 2.0V and VccT/R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

5) The module signal ground contacts, VeeR and VeeT, should be isolated from the module case.

6) RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 350 and 700 mV differential (175 –350 mV single ended) when properly terminated.

7) VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V ±5% at the SFP+ connector pin. Maximum supply current is 680Ma. Recommended host board power supply filtering is shown below. Inductors with DC resistance of less than 1 ohm should be used in order to maintain the required voltage at the SFP+ input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot plugging of the SFP+ transceiver module will result in an inrush current of no more than 30 mA greater than the steady state value. VccR and VccT may be internally connected within the SFP+ transceiver module.

8) TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 150 - 1200 mV (75 - 600mV single-ended).

EEPROM

The serial interface uses the 2-wire serial CMOS EEPROM protocol defined for the ATMEL AT24C02/04 family of components. When the serial protocol is activated, the host generates the serial clock signal (SCL). The positive edge clocks data into those segments of the EEPROM that are not writing protected within the SFP+ transceiver. The negative edge clocks data from the SFP+ transceiver. The serial data signal (SDA) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

The Module provides diagnostic information about the present operating conditions. The transceiver generates this diagnostic data by digitization of internal analog signals. Calibration and alarm/warning threshold data is written during device manufacture. Received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring all are implemented. If the module is defined as external calibrated, the diagnostic data are raw A/D values and must be converted to real world units using calibration constants stored in EEPROM locations 56 – 95 at wire serial bus address A2h. The digital diagnostic memory map specific data field define as following .For detail EEPROM information, please refer to the related document of SFF 8472 Rev 10.2.

		2 wire address 10100	00X (A0ł	n) 2 w	ire address 1010	0001X (A2h	1)	
		0 Serial ID Defir	ed by	55	Alarm and W Thresholds (5	/arning 6 bytes)		
			bytes)		Cal Const (40 byte	ants s)		
	1	95 Vendor Spe	cific	95	Real Time Di	agnostic		
		(32 bytes)	119	Interface (24	bytes)		
	1	27		127	User Writ	able		
		Reserved (128 byte	d s)	247	EEPROM (12	0 bytes)		
	2	55	,	255	Vendor Specifi	c (8 ytes)		
EE	PRO	M Address		A0ł	ו	Ver	sion	V1.0
Data Addr	Field Size (Byte)	Name Of filed		Description of field			l value	Hex
	I		В	ASE ID FIEL	.DS			
0	1	Identifier	Ту	pe of serial t	ransceiver	SF	P+	03
1	1	Ext.Identifier	Exte	nded identifi serial trans	er of Type of ceiver	MOD_	DEF 4	04
2	1	Connector	Co	ode for conn	ector type	L	С	07
3			10G Et	thernet Com	pliance Codes	10G Ba	ase-ER	80
	-		& INTIN Part					
4			i an	Code	S			00
5	-		SO	NET Complia	ance Codes			00
6			Ethe	ernet Compli	ance Codes			00
7	8	Transceiver	Fiber C	hannel link l	ength & part of			00
	-		Part of	Fiber Chan	nel transmitter			
8			T dit of	technolo	ogy			00
9			Fibe	r Channel T	ransmission			00
10	-			media	a al speed			00
			Cod	de for high s	peed serial			00
11	1	Encoding		encoding al	gorithm	64B	/66B	06
12	1	BR, Nominal	Nomir	nal signalling 100ME	g rate, units of d.	10.30	Gbps	67
13	1	Rate Identifier	Туре	of rate selec	t functionality			00

SFP+ Series

14	1	Length(SMF,km)	Link length supported for single mode fiber, units of km	40(km)	28
15	1	Length (SMF)	Link length supported for single mode fiber, units of 100 m	25.5(km)	FF
16	1	Length (50um)	Link length supported for 50 um OM2 fiber, units of 10 m		00
17	1	Length (62.5um)	Link length supported for 62.5 um OM1 fiber, units of 10 m		00
18	1	Length (Copper)	Link length supported for copper, units of meters		00
19	1	Length (OM3)	Link length supported for 50 um OM3 fiber, units of 10 m		00
20				D	44
21				а	61
22				t	74
23				а	61
24				<space></space>	20
25			Vendor name Vendor name (ASCII)	С	43
26				0	6F
27	10			n	6E
28	16	vendor name		t	74
29				r	72
30				0	6F
31				I	6C
32			S	73	
33				<space></space>	20
34					20
35				<space></space>	20
36	1		Reserved		00
37					00
38	3	Vendor OUI	SFP vendor IEEE company ID		00
39					00
40				Х	ХХ
41				Х	ХХ
42				Х	ХХ
43				X	хх
44	10	Vonder DN	Part number provided by vendor	Х	ХХ
45	01	vendor PN	(ASCII)	Х	ХХ
46				X	xx
47				X	xx
48]			X	xx
49				X	XX

50]			x	xx
51				х	XX
52				х	XX
53				х	ХХ
54				х	XX
55				<space></space>	20
56				1	31
57	4		Revision level for part number		2E
58	4	vendor rev	provided by vendor (ASCII)	1	31
59				<space></space>	20
60	2	Movelength	Leser Wayalangth	1550pm	06
61		wavelength	Laser wavelength	155000	0E
62	1		Reserved		00
62	1		Check code for Base ID Fields	Noto6	XX
03		CC_BASE	(addresses 0 to 62)	NOLEO	XX
64			Indicates which optional	TX_DISABLE,	00
	2	Options	transceiver signals are	TX_FAULT	
65			implemented	signal,Rx_LOS	1A
66	1	BR, max	Upper bit rate margin, units of %		00
67	1	BR, min	Lower bit rate margin, units of %		00
68				х	xx
69			х	xx	
70			х	xx	
71				х	xx
72				х	xx
73				х	xx
74				х	xx
75	16	Vondor SN	Serial number provided by vendor	х	xx
76	10	Vendor Sin	(ASCII)	х	xx
77				х	xx
78				<space></space>	20
79				<space></space>	20
80				<space></space>	20
81				<space></space>	20
82				<space></space>	20
83				<space></space>	20
84				Year	xx
85				Year	xx
86	0	Data aada	Vandar's manufacturing data as da	Month	XX
87	0			Month	XX
88]			Day	XX
89]			Day	xx

90				<space></space>	20
91				<space></space>	20
92	1	Diagnostic Monitoring Type	Type of diagnostic monitoring is implemented	DD Implemented; Internally Calibrated; Average Power	68
93	1	Enhanced Options	Optional enhanced features are implemented	Optional Alarm/warning Flags Implemented,Optio nal soft TX_FAULT monitoring,Optiona I soft RX_LOS monitoring	B0
94	1	SFF-8472 Compliance	Revision of SFF-8472 the transceiver complies with	Rev 10.2 of SFF-8472.	03
95	1	CC_EXT	Check code for the Extended ID Fields (addresses 64 to 94)	Note7	
Note 6 to byte	6: The che e 62, inclu	eck code shall be the l isive.	ow order 8 bits of the sum of the cont	ents of all the bytes fro	m byte 0
Note7	: The che	eck code shall be the le	ow order 8 bits of the sum of the cont	ents of all the bytes fro	om byte
64 to b	oyte 94, ir	nclusive.			

Recommend Circuit Schematic

Data Controls Inc. Page 10 of 12

Mechanical Specifications

*This 2D drawing only for reference, please check with Data Controls Inc. before ordering

Eye Safety

This single-mode transceiver is a Class 1 laser product. It complies with IEC-60825 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated within the specified temperature and voltage limits. The optical ports of the module shall be terminated with an optical connector or with a dust plug.

Obtaining Document

You can visit our website: https://www.dci.jp

Or contact Data Controls Inc.. Listed at the end of the documentation to get the latestdocument.

Revision History

Revision	DCN	Release Date
V1.a	New Released.	July 16, 2012
V1.b	Update mechanicalspec. & power dissipation & Er & application.	July 24, 2012
V1.c	Update photo.	July 27, 2012
V1.d	Update Power issipation & Icc	July 31, 2012
V1.e	Add 8G application.	Jan 5, 2013
V1.f	Update pin definition notes	Jan 28, 2013
V1.g	Add typical min. output power to -1dBm.	Mar 5, 2013
V1.h	Correct note5	July 1, 2013
V2.0	Update RegulatoryCompliance and Mechanical Specifications	Feb 4, 2015
V2.a	Add CPRI&OBSAI application and industrial temperaturerange. Update max data rate and the tolerances of 2D drawing.	April 21,2015
V2.b	Update the regulatorycompliance and corrected some slip of the pen.	April 14,2016
V2.c	Update the center wavelength and the 2D drawing	Jul 17, 2017
V2.d	Update the centerwavelength of the receiver	Jul 17, 2017
V2.e	Add the EEPROM contents of A0h.	August 11, 2017
V2.f	Update the Pin functiondefinition of Pin7(RS0) and Pin9(RS1). Update the contact.	December12,2017
V2.g	Update the CPRI datarates, picture and 2D drawing.	March 21, 2018

Notice:

Data Controls Inc. reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance. Applications that are described herein for any of the optical link products are for illustrative purposes only. Data Controls Inc. makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Contact: Data Controls Inc.

Add: 8F, Fukashiro Bldg. 1-20-4 Yanagibashi, Taito-ku, Tokyo Japan 111-0052 TEL: +81 3 5829 5805 FAX:+81 3 5829 5806 E-mail: sales@dci.jp <u>https://www.dci.jp</u>