

DQxx-SFP-LC.S10 series

SFP28 Single-Mode for DWDM Application
Duplex SFP28 Transceiver, With DDM and Dual CDR
Digital Diagnostic Function
RoHS Compliant

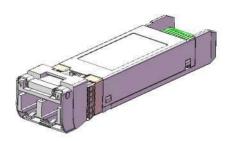
Features

- Operating data rate support 24.33Gbps /25.78Gbps
- Available in all C-Band Wavelengths on the 100GHz DWDM ITU Grid
- ◆ Temperature-Stabilized DWDM EML Transmitter
- ◆ Duplex LC Connector
- ◆ Power Dissipation < 2W</p>
- With CDR function
- ◆ Dispersion tolerance from -200ps/nm to 200ps/nm (10km)
- ♦ Hot-Pluggable
- Compliant with SFF-8402
- ◆ Operating Case Temperature:

Standard: 0°C~+70°C

Industrial: -40~+85°C

◆ Safety Certification: TUV/UL/FDA*Note1


♦ RoHS Compliant*Note1

Ordering Information

Part No.	Data Rate	Laser	Power budget	CDR	Case Temp.
DQxx-SFP-LC.S10*Note2	25.78Gbps	DWDM EML	13dB	YES	0°C to +70°C
DQxx-SFP-LC.S10(WT)*Note2	25.78Gbps	DWDM EML	13dB	YES	-40°C to +85°C

Note1: For the latest certification information, please check with Data Controls Inc.

Note2: XX refers to DWDM Wavelength channel as ITU-T specified, please refer the following table for detailed center wavelength information.

Applications

- ◆ CPRI Option 10
- ◆ 25GbE
- Other Optical Link

^{*}The product image is only for reference purpose.

XX- Channel refers to the following table:

Channel (XX)* ^{Note3}	Part NO.	Frequency (THz)	Center Wavelength (nm)
15	DQ15-SFP-LC.S10 DQ15-SFP-LC.S10(WT)	191.5	1565.50
16	DQ16-SFP-LC.S10 DQ16-SFP-LC.S10(WT)	191.6	1564.68
17	DQ17-SFP-LC.S10 DQ17-SFP-LC.S10(WT)	191.7	1563.86
18	DQ18-SFP-LC.S10 DQ18-SFP-LC.S10(WT)	191.8	1563.05
19	DQ19-SFP-LC.S10 DQ19-SFP-LC.S10(WT)	191.9	1562.23
20	DQ20-SFP-LC.S10 DQ20-SFP-LC.S10(WT)	192.0	1561.42
21	DQ21-SFP-LC.S10 DQ21-SFP-LC.S10(WT)	192.1	1560.61
22	DQ22-SFP-LC.S10 DQ22-SFP-LC.S10(WT)	192.2	1559.79
23	DQ23-SFP-LC.S10 DQ23-SFP-LC.S10(WT)	192.3	1558.98
24	DQ24-SFP-LC.S10 DQ24-SFP-LC.S10(WT)	192.4	1558.17
25	DQ25-SFP-LC.S10 DQ25-SFP-LC.S10(WT)	192.5	1557.36
26	DQ26-SFP-LC.S10 DQ26-SFP-LC.S10(WT)	192.6	1556.55
27	DQ27-SFP-LC.S10 DQ27-SFP-LC.S10(WT)	192.7	1555.75
28	DQ28-SFP-LC.S10 DQ28-SFP-LC.S10(WT)	192.8	1554.94
29	DQ29-SFP-LC.S10 DQ29-SFP-LC.S10(WT)	192.9	1554.13
30	DQ30-SFP-LC.S10 DQ30-SFP-LC.S10(WT)	193.0	1553.33
31	DQ31-SFP-LC.S10 DQ31-SFP-LC.S10(WT)	193.1	1552.52
32	DQ32-SFP-LC.S10 DQ32-SFP-LC.S10(WT)	193.2	1551.72
33	DQ33-SFP-LC.S10 DQ33-SFP-LC.S10(WT)	193.3	1550.92

SFP28 Series Preliminary

34	DQ34-SFP-LC.S10	193.4	1550.12	
	DQ34-SFP-LC.S10(WT)			
35	DQ35-SFP-LC.S10	193.5	1549.32	
35	DQ35-SFP-LC.S10(WT)		.0.0.02	
36	DQ36-SFP-LC.S10	193.6	1548.51	
	DQ36-SFP-LC.S10(WT)	100.0	10 10.01	
37	DQ37-SFP-LC.S10	193.7	1547.72	
0,	DQ37-SFP-LC.S10(WT)	100.7	1017.72	
38	DQ38-SFP-LC.S10	193.8	1546.92	
	DQ38-SFP-LC.S10(WT)	100.0	10 10.02	
39	DQ39-SFP-LC.S10	193.9	1546.12	
	DQ39-SFP-LC.S10(WT)	100.0	10 10.12	
40	DQ40-SFP-LC.S10	194.0	1545.32	
-10	DQ40-SFP-LC.S10(WT)	104.0	10-10.02	
41	DQ41-SFP-LC.S10	194.1	1544.53	
T 1	DQ41-SFP-LC.S10(WT)	10 1.1	10 17.00	
42	DQ42-SFP-LC.S10	194.2	1543.73	
72	DQ42-SFP-LC.S10(WT)	104.2	1040.70	
43	DQ43-SFP-LC.S10	194.3	1542.94	
-10	DQ43-SFP-LC.S10(WT)	104.0		
44	DQ44-SFP-LC.S10	194.4	1542.14	
	DQ44-SFP-LC.S10(WT)	104.4	1012.11	
45	DQ45-SFP-LC.S10	194.5	1541.35	
10	DQ45-SFP-LC.S10(WT)	10 1.0		
46	DQ46-SFP-LC.S10	194.6	1540.56	
10	DQ46-SFP-LC.S10(WT)	10 1.0	10 10.00	
47	DQ47-SFP-LC.S10	194.7	1539.77	
.,,	DQ47-SFP-LC.S10(WT)	10 1.7	1000.77	
48	DQ48-SFP-LC.S10	194.8	1538.98	
	DQ48-SFP-LC.S10(WT)	.5 1.5	.000.00	
49	DQ49-SFP-LC.S10	194.9	1538.19	
	DQ49-SFP-LC.S10(WT)	10 1.0	1000.10	
50	DQ50-SFP-LC.S10	195.0	1537.40	
	DQ50-SFP-LC.S10(WT)	100.0	1007.70	
51	DQ51-SFP-LC.S10	195.1	1536.61	
01	DQ51-SFP-LC.S10(WT)	100.1	1000.01	
52	DQ52-SFP-LC.S10	195.2	1535.82	
02	DQ52-SFP-LC.S10(WT)	100.2	1000.02	
53	DQ53-SFP-LC.S10	195.3	1535.04	
	DQ53-SFP-LC.S10(WT)	100.0	1000.07	
54	DQ54-SFP-LC.S10	195.4	1534.25	
54	DQ54-SFP-LC.S10(WT)	155.4	1534.25	

55	DQ55-SFP-LC.S10 DQ55-SFP-LC.S10(WT)	195.5	1533.47	
56	DQ56-SFP-LC.S10	195.6	1522.69	
50	DQ56-SFP-LC.S10(WT)	195.0	1532.68	
57	DQ57-SFP-LC.S10	195.7	1531.90	
57	DQ57-SFP-LC.S10(WT)	195.7	1551.90	
58	DQ58-SFP-LC.S10		1531.12	
36	DQ58-SFP-LC.S10(WT)	195.6	1001.12	
59	DQ59-SFP-LC.S10	195.9	1530.33	
59	DQ59-SFP-LC.S10(WT)	190.9	1000.00	
60	DQ60-SFP-LC.S10	196.0	1520.55	
οU	DQ60-SFP-LC.S10(WT)	190.0	1529.55	
61	DQ61-SFP-LC.S10	106.1	1520 77	
	DQ61-SFP-LC.S10(WT)	196.1	1528.77	

^{*}Note3: Please contact with Data Controls Inc. for the channel availability.

Product Description

The DQxx-SFP-LC.S10 series single mode transceiver is SFP28 module for duplex optical data communications support 25.78Gb/s. This module is designed for single mode fiber and operates at a nominal DWDM wavelength from 1528nm to 1566nm as specified by ITU-T.

It is with the SFP+ 20-pin connector to allow hot plug capability. The transmitter section uses a DWDM EML laser and is a class 1 laser compliant according to International Safety Standard IEC-60825. The receiver section uses an integrated InGaAs detector preamplifier (IDP) mounted in an optical header.

The DQxx-SFP-LC.S10 series is designed to be compliant with SFP28 Multi-Source Agreement (MSA) Specification SFF-8402.

Absolute Maximum Ratings*Note4

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Supply Voltage	Vcc	-0.5	3.6	V
Operating Relative Humidity	RH	5	85	%

Note4: Exceeding any one of these values may destroy the device immediately.

Recommended Operating Conditions

Parameter	Symbol		Min.	Typical	Max.	Unit
On and the second second second		Standard	0		+70	°C
Operating Case Temperature	Tc	Industrial	-40		+85	°C
Power Supply Voltage	Vcc		3.15	3.3	3.45	V
Power Supply Current	lcc				606	mA

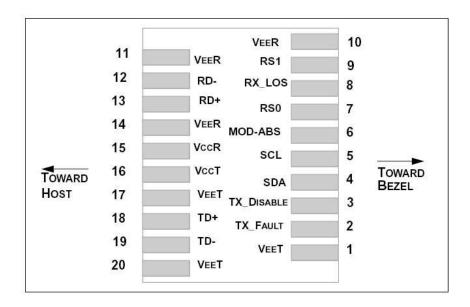
Performance Specifications – Electrical

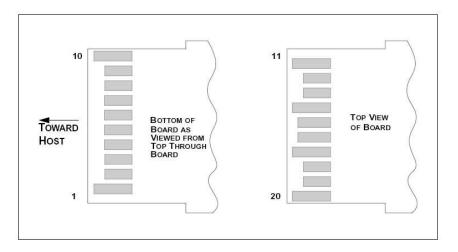
Pa	rameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Transmitter								
CML Inp	CML Inputs(Differential)		40		1000	mVpp	AC coupled input*Note5	
	Input Impedance (Differential)			100		ohm	Rin > 100 kohm @ DC	
TV Die	Disable		2		Vcc+0.3	V		
TX_Dis	Enable		0		0.8	V		
TX FAULT	Fault		2.4		Vcc+0.3	V		
IA_FAULI	Normal		0		0.4	V		
			Receiv	er				
CML Outputs (Differential)		Vout	450		1050	mVpp	AC coupled output*(Note5)	
Output Impedance (Differential)		Zout	85	100	115	ohm		
DV LOS	LOS		2.4		Vcc+0.3	V		
RX_LOS	Normal		0		0.4	V		

Performance Specifications – Optical

Parameter	Symbol	Min.	Typical	Max.	Unit			
Tra	Transmitter							
Contor Wayalangth Specing			100		GHz			
Center Wavelength Spacing			0.8		nm			
Side Mode Suppression Ratio	SMSR	30			dB			
Average Output Power@25.78Gb/s*Note6	Pout	-1		+4	dBm			
Extinction Ratio	ER	6			dB			
R	eceiver							
Receiver Sensitivity@25.78Gb/s*Note7	Pmin			-14	dBm			
Receiver Overload*Note8	Pmax	2			dBm			
LOS De-Assert	LOSD			-17	dBm			
LOS Assert	LOSA	-30			dBm			
LOS Hysteresis	Ну	0.5			dB			
Optical Signal To Noise Ratio Tolerance	OSNR	33			dB			

Note5: CML logic, internally AC coupled.


Note6: Output is coupled into a 9/125µm single-mode fiber.


Note7: Minimum average optical power measured at the BER less than 5E-5. The measure pattern is PRBS

Note8: It's suggested to using a >3dB attenuator between Transmitter and Receiver if testing Tx to Rx directly.

SFP28 Transceiver Electrical Pad Layout

Pin Function Definition

Pin Num.	Name	FUNCTION	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	Note 5
2	TX_Fault	Transmitter Fault Indication	3	Note 1
3	TX Disable	Transmitter Disable	3	Note 2, Module disables on high or open
4	SDA	Module Definition 2	3	Note 3, Data line for Serial ID.
5	SCL	Module Definition 1	3	Note 3, Clock line for Serial ID.
6	MOD-ABS	Module Definition 0	3	Note 3

SFP28 Series Preliminary

				J
7	RS0	RX Rate Select (LVTTL).	3	This pin has an internal 47k pull down to ground. RS0=1 sets Rx CDR enable, while RS0=0 sets Rx CDR bypass.
8	RX_LOS	Loss of Signal	3	Note 4
9	RS1	TX Rate Select (LVTTL).	1	This pin has an internal 47k pull down to ground. RS1=1 sets Tx CDR enable, while RS1=0 sets Tx CDR bypass.
10	VeeR	Receiver Ground	1	Note 5
11	VeeR	Receiver Ground	1	Note 5
12	RD-	Inv. Received Data Out	3	Note 6
13	RD+	Received Data Out	3	Note 7
14	VeeR	Receiver Ground	1	Note 5
15	VccR	Receiver Power	2	3.3 ± 5%, Note 7
16	VccT	Transmitter Power	2	3.3 ± 5%, Note 7
17	VeeT	Transmitter Ground	1	Note 5
18	TD+	Transmit Data In	3	Note 8
19	TD-	Inv. Transmit Data In	3	Note 8
20	VeeT	Transmitter Ground	1	Note 5

Notes

- 1) TX Fault is an open collector/drain output, which should be pulled up with a $4.7K-10K\Omega$ resistor on the host board. Pull up voltage between 2.4V and VccT/R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.4V.
- 2) TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7K^{\sim}10~K~\Omega$ resistor. Its states are:

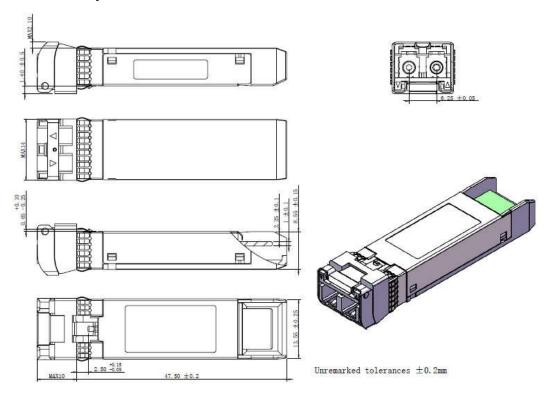
Low (-0.3 - 0.8V): Transmitter on

(>0.8, < 2.0V): Undefined

High (2.0 - VccT/R+0.3V): Transmitter Disabled

Open: Transmitter Disabled

- 3) Module Absent, connected to VeeT or VeeR in the module.
- 4) RX_LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a $4.7K 10K\Omega$ resistor. Pull up voltage between 2.4V and VccT/R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by


SFP28 Series Preliminary

the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.4 V.

- 5) VeeR and VeeT may be internally connected within the SFP28 module.
- 6) RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 225 mV-525mV single-ended when properly terminated.
- 7) VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V ±5% at the SFP+ connector pin. Maximum supply current is 606mA. Inductors with DC resistance of less than 1 ohm should be used in order to maintain the required voltage at the SFP28 input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot plugging of the SFP28 transceiver module will result in an inrush current of no more than 30mA greater than the steady state value. VccR and VccT may be internally connected within the SFP28 transceiver module.
- 8) TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept swings of 20mV-500mV single-ended, though it is recommended that values between 90mV-900mV single-ended be used for best EMI performance.

Mechanical Specifications

*This 2D drawing is only for reference, please check with Data Controls before ordering.

Eye Safety

This single-mode transceiver is a Class 1 laser product. It complies with IEC-60825 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated within the specified temperature and voltage limits. The optical ports of the module shall be terminated with an optical connector or with a dust plug.

Obtaining Document

You can visit our website: https://dci.jp

Or contact Data Controls Inc., Ltd. Listed at the end of the documentation to get the latest documents.

Notice:

Data Controls Inc. reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance. Applications that are described herein for any of the optical link products are for illustrative purposes only. Data Controls Inc. makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Contact:

Data Controls Inc.

E-mail:sales@dci.jp

https://dci.jp