

RoHS compliant CWDM 1550 nm Single-mode Transceiver, 31dB margin Small Form Pluggable (SFP), 3.3V

155 Mbps SONET OC-3/SDH STM-1/125 Mbps Fast Ethernet

Features

- RoHS compliant
- Compliant with SONET/SDH standard
- Compliant with Fast Ethernet standard
- Industry standard small form pluggable (SFP) package
- Duplex LC connector
- Differential LVPECL inputs and outputs
- Single power supply 3.3V
- TTL signal detect indicator
- Hot Pluggable

Website: https://www.dci.jp

Class 1 laser product complies with EN 60825-1

Ordering Information

PART NUMBER	WAVELENGTH	INPUT/OUTPUT	SIGNAL DETECT	VOLTAGE	TEMPERATURE
DC1470-SFP-LC.S80	1470 nm	AC/AC	TTL	3.3V	0° C to 70° C
DC1490-SFP-LC.S80	1490 nm	AC/AC	TTL	3.3V	0° C to 70° C
DC1510-SFP-LC.S80	1510 nm	AC/AC	TTL	3.3V	0° C to 70° C
DC1530-SFP-LC.S80	1530 nm	AC/AC	TTL	3.3V	0° C to 70° C
DC1550-SFP-LC.S80	1550 nm	AC/AC	TTL	3.3V	0° C to 70° C
DC1570-SFP-LC.S80	1570 nm	AC/AC	TTL	3.3V	0° C to 70° C
DC1590-SFP-LC.S80	1590 nm	AC/AC	TTL	3.3V	0° C to 70° C
DC1610-SFP-LC.S80	1610 nm	AC/AC	TTL	3.3V	0° C to 70° C

Page 1 of 10 Version 1.0 Date: 11/30/2005

Absolute Maximum Ratings

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTE
Storage Temperature	T_S	-40	85	°C	
Supply Voltage	Vcc	-0.5	4.0	V	
Input Voltage	V_{IN}	-0.5	Vcc	V	
Output Current	I_o		50	mA	
Operating Current	I_{OP}		400	mA	

Page 2 of 10 Version 1.0

Date: 11/30/2005

Website: https://www.dci.jp

Recommended Operating Conditions

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTE
Case Operating Temperature	T_C	0	70	°C	
Supply Voltage	Vcc	3.1	3.5	V	
Supply Current	$I_{TX}+I_{RX}$		300	mA	

Transmitter Electro-optical Characteristics

 $Vcc = 3.1 \text{ V to } 3.5 \text{ V}, T_{\rm C} = 0 \,^{\circ}\text{C to } 70 \,^{\circ}\text{C}$

SYMBOL	MIN	TYP.	MAX	UNITS	NOTE
В	50	155	200	Mb/s	
Pout	-4		+3	dBm	Average
ER	10			dB	
λ_C	1464.5		1477.5	nm	
	1484.5		1497.5	nm	
	1504.5		1517.5	nm	
	1524.5		1537.5	nm	
	1544.5		1557.5	nm	
	1564.5		1577.5	nm	
	1584.5		1597.5	nm	
	1604.5		1617.5	nm	
Δλ			1	nm	
SMSR	30			dB	
$T_{r, f}$		1	2	ns	
P_{OFF}			-45	dBm	
Compliant w	ith Telcordia	GR-253-C	ORE Issue 3 a	and ITU-T reco	ommendation G-957
V_{DIFF}	0.4		2.0	V	
	B $Pout$ ER λ_C $\Delta\lambda$ $SMSR$ $T_{r,f}$ P_{OFF} $Compliant w$	B 50 Pout -4 ER 10 $λ_C$ 1464.5 1484.5 1504.5 1524.5 1544.5 1564.5 1584.5 $Δλ$ SMSR 30 $T_{r,f}$ P_{OFF} Compliant with Telcordia	B 50 155 Pout -4 ER 10 $λ_C$ 1464.5 1504.5 1524.5 1564.5 $Δλ$ SMSR 30 $T_{r,f}$ 1 P_{OFF} Compliant with Telcordia GR-253-C	B 50 155 200 Pout -4 +3 ER 10 λ _C 1464.5 1477.5 1484.5 1497.5 1504.5 1517.5 1524.5 1537.5 1544.5 1577.5 1584.5 1597.5 Δλ 1617.5 Δλ 1 SMSR 30 $T_{r,f}$ 1 2 P_{OFF} -45 Compliant with Telcordia GR-253-CORE Issue 3 and	B 50 155 200 Mb/s Pout -4 +3 dBm ER 10 dB λ _C 1464.5 1477.5 nm 1484.5 1497.5 nm 1504.5 1517.5 nm 1544.5 1537.5 nm 1564.5 1577.5 nm 1584.5 1597.5 nm Δλ 1 nm Δλ 1 nm SMSR 30 dB $T_{r,f}$ 1 2 ns P_{OFF} -45 dBm Compliant with Telcordia GR-253-CORE Issue 3 and ITU-T rec

Website: https://www.dci.jp

Page 3 of 10 Version 1.0

Receiver Electro-optical Characteristics

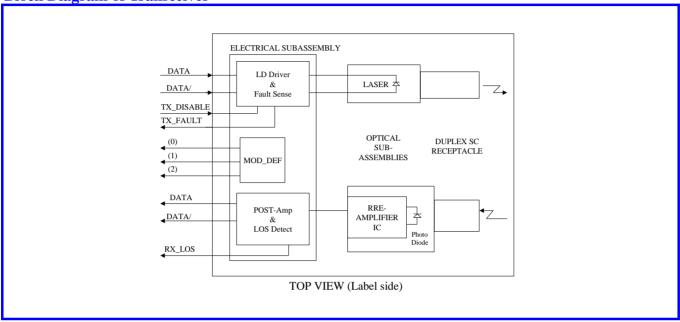
 $Vcc = 3.1 \text{ V to } 3.5 \text{ V}, T_{\text{C}} = 0 \,^{\circ}\text{C} \text{ to } 70 \,^{\circ}\text{C}$

PARAMETER	SYMBOL	MIN	TYP.	MAX	UNITS	NOTE
Data Rate	В	50	155	200	Mb/s	
Optical Input Power -maximum	P_{IN}	0			dBm	Note 1
Optical Input Power –minimum (Sensitivity)	P_{IN}			-35	dBm	Note 1
Operating Center Wavelength	λ_C	1260		1600	nm	
Data Output Rise, Fall Time (10%~90%)	$T_{r,f}$		1	2	ns	
Loss of Signal-Asserted	P_A			-35	dBm	
Loss of Signal-Deasserted	P_D	-45			dBm	
Loss of Signal-Hysteresis	$P_A - P_D$	1.0			dB	
Differential Output Voltage	V_{DIFF}	0.5		1.2	V	
Receiver Loss of Signal Output Voltage-Low	RX_LOS_L	0		0.5	V	
Receiver Loss of Signal Output Voltage-High	RX_LOS_H	2.4		V_{CC}	V	

Note 1: The input data is at 155.52 Mbps, 2^{23} –1 PRBS data pattern. The receiver is guaranteed to provide output data with Bit Error Rate (BER) better than or equal to 1×10^{-10} .

Page 4 of 10 Version 1.0

Date: 11/30/2005


Website: https://www.dci.jp

RoHS compliant CWDM 1550 nm Single-mode Transceiver, 31dB margin Small Form Pluggable (SFP), 3.3V

155 Mbps SONET OC-3/SDH STM-1/125 Mbps Fast Ethernet

Block Diagram of Transceiver

Transmitter Section

The transmitter section consists of a 1550 nm InGaAsP laser in an eye safe optical subassembly (OSA) which mates to the fiber cable. The laser OSA is driven by a LD driver IC which converts differential input LVPECL logic signals into an analog laser driving current.

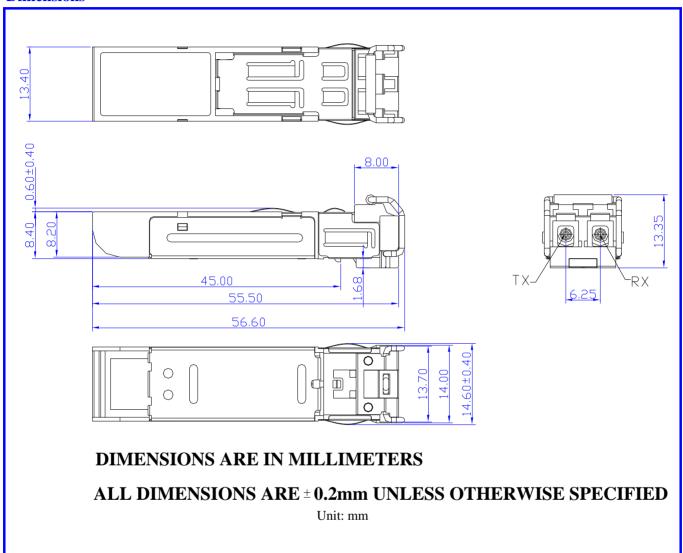
TX DISABLE

The TX_DISABLE signal is high (TTL logic "1") to turn off the laser output. The laser will turn on when TX_DISABLE is low (TTL logic "0").

Receiver Section

The receiver utilizes an InGaAs PIN photodiode mounted together with a trans-impedance preamplifier IC in an OSA. This OSA is connected to a circuit providing post-amplification quantization, and optical signal detection.

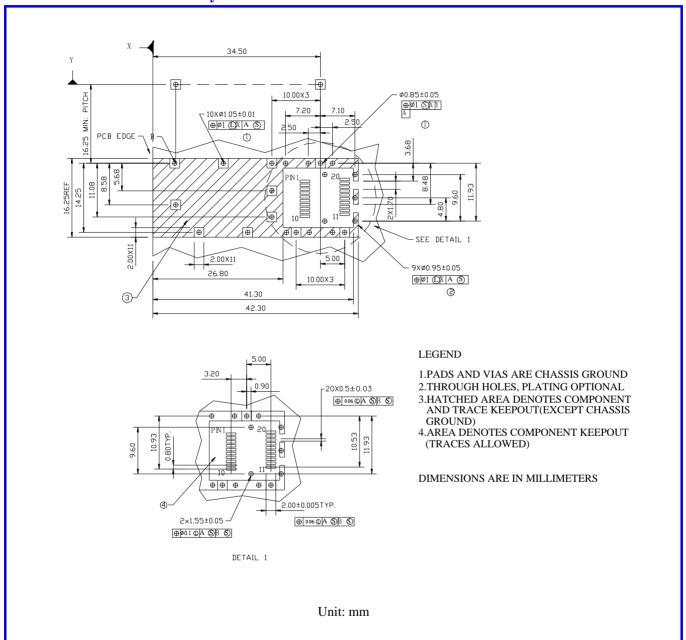
Receive Loss (RX LOS)


The RX_LOS is high (logic "1") when there is no incoming light from the companion transceiver. This signal is normally used by the system for the diagnostic purpose. The signal is operated in TTL level.

Website: https://www.dci.jp

Page 5 of 10 Version 1.0

Dimensions

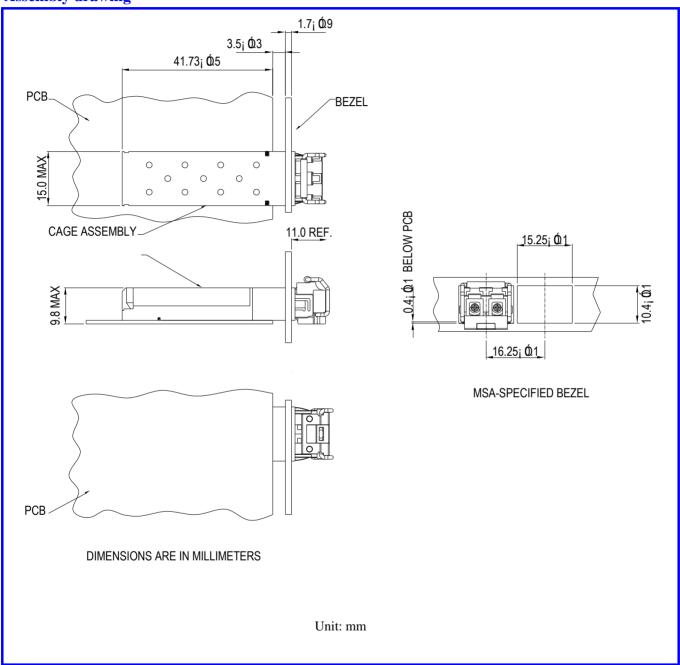


Page 6 of 10 Version 1.0 Date: 11/30/2005 Website: https://www.dci.jp

RoHS compliant CWDM 1550 nm Single-mode Transceiver, 31dB margin Small Form Pluggable (SFP), 3.3V

155 Mbps SONET OC-3/SDH STM-1/125 Mbps Fast Ethernet

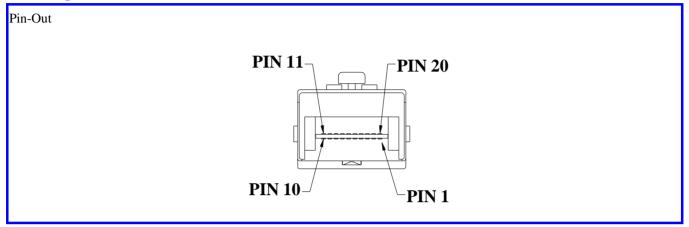
SFP host board mechanical layout



Website: https://www.dci.jp

Page 7 of 10 Version 1.0

Assembly drawing



Website: https://www.dci.jp

Page 8 of 10 Version 1.0

Pin Assignment

Pin	Signal Name	Description
1	T_{GND}	Transmit Ground
2	TX_FAULT	Transmit Fault
3	TX_DISABLE	Transmit Disable
4	$MOD_DEF(2)$	SDA Serial Data Signal
5	$MOD_DEF(1)$	SCL Serial Clock Signal
6	$MOD_DEF\left(0\right)$	TTL Low
7	RATE SELECT	Open Circuit
8	RX_LOS	Receiver Loss of Signal, TTL High, open collector
9	R_{GND}	Receiver Ground
10	R_{GND}	Receiver Ground
11	R_{GND}	Receiver Ground
12	RX-	Receive Data Bar, Differential PECL, ac coupled
13	RX+	Receive Data, Differential PECL, ac coupled
14	R_{GND}	Receiver Ground
15	V_{CCR}	Receiver Power Supply
16	V_{CCT}	Transmitter Power Supply
17	T_{GND}	Transmitter Ground
18	TX+	Transmit Data, Differential PCEL, ac coupled
19	TX-	Transmit Data Bar, Differential PCEL, ac coupled
20	T_{GND}	Transmitter Ground

Website: https://www.dci.jp

Page 9 of 10 Version 1.0

Eye Safety Mark

The DC series Single-mode transceiver is a class 1 laser product. It complies with EN 60825-1 and FDA 21 CFR 1040.10 and 1040.11. In order to meet laser safety requirements the transceiver shall be operated within the Absolute Maximum Ratings.

Caution

All adjustments have been done at the factory before the shipment of the devices. No maintenance and user serviceable part is required. Tampering with and modifying the performance of the device will result in voided product warranty.

Required Mark

Website: https://www.dci.jp

Class 1 Laser Product Complies with 21 CFR 1040.10 and 1040.11

Note: All information contained in this document is subject to change without notice.

Page 10 of 10 Version 1.0