JB1490-SFP-LC.S80 & JB1550-SFP-LC.S80

Tx: 1490nm/Rx: 1550nm BIDI SFP+ Transceiver for 10GbE Tx: 1550nm/Rx: 1490nm BIDI SFP+ Transceiver for 10GbE RoHS 6 Compliant

Features

- Operating data rate up to 11.3Gbps
- Two types:
 - A: 1490nm EML Transmitter/ 1550nm APD Receiver
 - B: 1550nm EML Transmitter/ 1490nm APD Receiver
- Up to 80km transmission on SMF
- Built-in dual CDR
- Single 3.3V Power supply and TTL Logic Interface
- ◆ LC Connector Interface
- Hot Pluggable
- Power Dissipation < 2W
- ◆ Operating Case Temperature Standard:0°C~+70°C
- Compliant with SFP+ MSA Specification SFF-8431
- Compliant with SFF-8472
- Safety Certification: TUV/UL/FDA^{*Note1}

Ordering information

Applications

- ♦ 10GBASE-ZR at 10.3125Gbps
- ♦ 10GBASE-ZW at 9.953Gbps
- CPRI rates 10.138Gb/s, 9.830 Gb/s
- Other Optical Links

Part No.	Data Rate	Laser	Temp.	Power Budget	Optical Interface	CDR	DDMI
JB1490-SFP-LC.S80 * Note2	Typical 10.3125 Gbps	1490nm EML	0~70 ℃	22dB	LC	YES	YES
JB1550-SFP-LC.S80 * Note2	Typical 10.3125Gbps	1550nm EML	0~70 ℃	22dB	LC	YES	YES

Note1: For the latest certification information, please check with Data Controls Inc..

Note2: Standard version.

*The product image only for reference purpose.

Product Description

The JB1490/1550-SFPC.S80series single mode transceiver is small form factor pluggable module for duplex optical data communications such as 10GBASE-LR/LW defined by IEEE 802.3ae. It iQs with the SFP+ 20-pin connector to allow hot plug capability.

The JB1490/1550-SFPC.S80 module is designed for single mode fiber and operates at a nominal wavelength of 1490nm; JB1490/1550-SFPC.S80 module is designed for single mode fiber and operates at a nominal wavelength of 1550nm. The transmitter section uses a multiple quantum well DFB, which is class 1 laser compliant according to International Safety Standard IEC-60825.

The receiver section uses an integrated InGaAs detector preamplifier (IDP) mounted in an optical header and a limiting post-amplifier IC.

Absolute Maximum Ratings* Note3

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Supply Voltage	V _{CC}	-0.5	3.6	V
Operating Relative Humidity	RH	5	95	%

*Note3: Exceeding any one of these values may destroy the device permanently.

Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit
Power Supply Voltage	V _{CC}	3.15	3.3	3.45	V
Power Supply Current	I _{CC}			606	mA
Operating Case Temperature	Tc		0	70	°C

Performance Specifications - Electrical

Parameter	Symbol	Min.	Тур.	Мах	Unit	Notes
		Trans	smitter			
CML	Vin	150		1200	m\/nn	AC coupled
Inputs(Differential)	VIII	150		1200	шvрр	inputs
Input Impedance	Zin	85	100	115	ohme	Rin > 100 kohms
(Differential)	2111	65	100	115	UTITIS	@ DC
Tx_DISABLE Input		C			V	
Voltage - High		Z		VCC+0.3	v	
Tx_DISABLE Input		0		0.0	V	
Voltage - Low		U		0.8	v	
Tx_FAULT Output		0				lo = 400µA; Host
Voltage - High		Z		VCC+0.3	V	Vcc
Tx_FAULT Output		0		0.5	V	$l_{0} = 4.0$ m A
Voltage - Low		U		0.5	V	10 = -4.0 mA

Customized SFP+ BIDI

Receiver							
CML Outputs	Vout	120		800	m)/mm	AC coupled	
(Differential)	voui	120		000	шурр	outputs	
Output Impedance	Zout	95	100 115	100	115	ohmo	
(Differential)	Zoul	65	100	115	UTITIS		
Rx_LOS Output		2			V	lo = 400µA; Host	
Voltage - High		2		VCC+0.5	v	Vcc	
Rx_LOS Output		0		0.0	V	$l_0 = 4.0$ mA	
Voltage - Low		0		0.0	v	10 – -4.0MA	
MOD_DEF(2:0)	VoH	2.5			V	With Serial ID	
	VoL	0		0.5	V		

Optical and Electrical Characteristics

(JB1490-SFPC.S80, 1490nm EML & APD/TIA)

Parameter	Symbol	Min.	Typical	Max.	Unit		
Data Rate			10.3125	11.3	Gbps		
Tra	Transmitter						
Center Wavelength	λc	1480	1490	1500	nm		
Spectral Width (-20dB)	Δλ			1	nm		
Side Mode Suppression Ratio	SMSR	30			dB		
Average Output Power@10.3125Gbps*note4	Pout, AVG	-1		4	dBm		
Extinction Ratio@10.3125Gbps	ER	7.5			dB		
Average Power of OFF Transmitter				-30	dBm		
Relative Intensity Noise	RIN			-128	dB/Hz		
Eye Mask	Compliant w	/ith IEEI	E 802.3ae ^{*n}	ote5			
R	eceiver						
Center Wavelength	λc	1540		1560	nm		
Sensitivity@10.3125Gbps *note6	P _{min}			-23	dBm		
Sensitivity(SM 80km)@10.3125Gbps*note6	P _{min}			-20	dBm		
Receiver Overload	P _{MAX}	-6			dBm		
LOS De-Assert	LOSD			-24	dBm		
LOS Assert	LOSA	-38			dBm		
LOS -Hysteresis	PHys	0.5	-	8	dB		

(JB1550-SFPC.S80, 1550nm EML & APD/TIA)

Parameter	Symbol	Min.	Typical	Max.	Unit
Data Rate			10.3125	11.3	Gbps
Trai	nsmitter				
Centre Wavelength	λc	1540	1550	1560	nm
Spectral Width (-20dB)	Δλ			1	nm
Side Mode Suppression Ratio	SMSR	30			dB
Average Output Power@10.3125Gbps *note4	Pout, AVG	-1		4	dBm

Customized SFP+ BIDI

Extinction Ratio@10.3125Gbps	ER 7.5				dB
Average Power of OFF Transmitter				-30	dBm
Relative Intensity Noise	RIN			-128	dB/Hz
Eye Mask	Co	ompliant	t with IEEE	802.3ae	*note5
Re	ceiver				
Centre Wavelength	λc	1480		1500	nm
Sensitivity@10.3125Gbps *note6	Pmin			-23	dBm
Sensitivity(SM 80km)@10.3125Gbps ^{*note6}	Pmin			-20	dbm
Receiver Overload	P _{MAX}	-6			dBm
LOS De-Assert	LOSD			-24	dBm
LOS Assert	LOSA	-38			dBm
LOS -Hysteresis	PHys	0.5	-	8	dB

*Note4: Output is coupled into a 9/125um SMF.

*Note5: Measured with RPBS 2^31-1 test pattern @10.3125Gbs

*Note6: Measured with BER less than 1E-12 and PRBS 2³¹-1 at 10.3125Gbps.

SFP+ Transceiver Electrical Pad Layout

Pin Function Definitions

Customized SFP+ BIDI

Pin Num.	Name	FUNCTION	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	Note 5
2	TX Fault	Transmitter Fault Indication	3	Note 1
3	TX Disable	Transmitter Disable	3	Note 2, Module disables on high or open
4	SDA	Module Definition 2	3	2-wire Serial Interface Data Line.
5	SCL	Module Definition 1	3	2-wire Serial Interface Clock.
6	MOD_ABS	Module Definition 0	3	Note 3
7	RS0	RX Rate Select (LVTTL).	3	No Function Implement.
8	RX LOS	Loss of Signal	3	Note 4
9	RS1	TX Rate Select (LVTTL).	1	No Function Implement.
10	VeeR	Receiver Ground	1	Note 5
11	VeeR	Receiver Ground	1	Note 5
12	RD-	Inv. Received Data Out	3	Note 6
13	RD+	Received Data Out	3	Note 6
14	VeeR	Receiver Ground	1	Note 5
15	VccR	Receiver Power	2	3.3 ± 5%, Note 7
16	VccT	Transmitter Power	2	3.3 ± 5%, Note 7
17	VeeT	Transmitter Ground	1	Note 5
18	TD+	Transmit Data In	3	Note 8
19	TD-	Inv. Transmit Data In	3	Note 8
20	VeeT	Transmitter Ground	1	Note 5

Notes:

 TX Fault is an open collector/drain output, which should be pulled up with a 4.7K – 10KΩ resistor on the host board. Pull up voltage between 2.0V and VccT/R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

2) TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7K - 10 K\Omega$ resistor. Its states are:

Low (0 - 0.8V): Transmitter on (>0.8, < 2.0V): Undefined

High (2.0 – 3.465V): Transmitter Disabled Open: Transmitter Disabled

3) Module Absent, connected to VeeT or VeeR in the module.

4) RX LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a 4.7K

- 10K Ω resistor. Pull up voltage between 2.0V and VccT/R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

5) The module signal ground contacts, VeeR and VeeT, should be isolated from the module case.

🕐 Data Controls

6) RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 120 and 800 mV differential (60 –400 mV single ended) when properly terminated.

7) VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V ±5% at the SFP+ connector pin. Maximum supply current is 606mA. Recommended host board power supply filtering is shown below. Inductors with DC resistance of less than 1 ohm should be used in order to maintain the required voltage at the SFP+ input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot plugging of the SFP+ transceiver module will result in an inrush current of no more than 30mA greater than the steady state value. VccR and VccT may be internally connected within the SFP+ transceiver module.

8) TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 150 – 1200 mV (75 – 600mV single-ended).

EEPROM

The serial interface uses the 2-wire serial CMOS EEPROM protocol. When the serial protocol is activated, the host generates the serial clock signal (SCL). The positive edge clocks data into those segments of the EEPROM that are not writing protected within the SFP+ transceiver. The negative edge clocks data from the SFP+ transceiver. The serial data signal (SDA) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

The Module provides diagnostic information about the present operating conditions. The transceiver generates this diagnostic data by digitization of internal analog signals. Calibration and alarm/warning threshold data is written during device manufacture. Received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring all are implemented. If the module is defined as external calibrated, the diagnostic data are raw A/D values and must be converted to real world units using calibration constants stored in EEPROM locations 56 – 95 at wire serial bus address A2h. The digital diagnostic memory map specific data field define as following .For detail EEPROM information, please refer to the related document of SFF 8472 Rev 12.2.

Recommend Circuit Schematic

Mechanical Specifications

*This 2D drawing only for reference, please check with Data Controls Inc. before ordering.

Eye Safety

This single-mode transceiver is a Class 1 laser product. It complies with IEC-60825 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated within the specified temperature and voltage limits. The optical ports of the module shall be terminated with an optical connector or with a dust plug.

Obtaining Document

You can visit our website:

https://www.dci.jp/

Or contact Data Controls Inc. listed at the end of the documentation to get the latest document.

Revision History

Revision	DCN	Release Date
V1.a	Preliminary)	May , 2019
	Omit "Preminary"	March ,2021

Notice:

Data Controls Inc. reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance.

Applications that are described herein for any of the optical link products are for illustrative purposes only. Data Controls Inc. makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Contact: Data Controls Inc.#

Add:8F, Fukashiro Bldg. 1-20-4 Yanagibashi, Taito-ku, Tokyo Postal code: 111-0052 Japan TEL: +81 3 5829 5805 FAX:+81 3 5829 5806 Email: <u>matsumura@dci.jp</u>