

JCXXXX-XFP-LC.S80

CWDM XFP Single-Mode for 10GbE/10GFC Duplex XFP Transceiver RoHS6 Compliant

Features

- ◆ Supports 9.95Gb/s to 11.1Gb/s Bit Rates
- Hot-Pluggable XFP Footprint
- ◆ Compliant with XFP MSA
- 8-Wavelengths CWDM EML Transmitter
 from 1470nm to 1610nm, with Step 20nm
- ◆ 24dB Power Budget
- Duplex LC Connector
- ♦ Power Dissipation < 3.5W
- ◆ Case Operation Temperature Range
 -5°C to 70°C
- 2-Wire Interface for Integrated Digital
 Diagnostic Monitoring

Applications

- ◆ 10GBASE-ZR/ZW 10G Ethernet
- ◆ 1200-SM-LL-L 10G Fiber Channel
- ◆ 10GE over G.709 at 11.09Gbps

Ordering Information

Part No.	Data Rate	Laser	Fiber	Power Budget	Interface
JCXXXX-XFP-LC.S80*(note1)	10G	CWDM EML	SMF	≥24dB	LC

Note1: X refers to CWDM Wavelength range 1470nm to 1610nm,

^{*}The product image only for reference purpose.

CWDM* Wavelength

Band	Nomenclature	Nomenclature Waveleng		
Bana	Nomenciature	Min.	Тур.	Max.
	1470	1464	1470	1477.5
S-band Short	1490	1484	1490	1497.5
Wavelength	1510	1504	1510	1517.5
	1530	1524	1530	1537.5
C-band Conventional	1550	1544	1550	1557.5
	1570	1564	1570	1577.5
L-band Long Wavelength	1590	1584	1590	1597.5
	1610	1604	1610	1617.5

CWDM*: 8 Wavelengths from 1470nm to 1610nm, each step 20nm.

Regulatory Compliance*Note2

Product Certificate	Certificate Number	Applicable Standard
		EN 60950-1:2006+A11+A1+A12+A2
TUV	R50135086	EN 60825-1:2014
		EN 60825-2:2004+A1+A2
1.11	F247227	UL 60950-1
UL	E317337	CSA C22.2 No. 60950-1-07
		EN 55032:2012
EMC CE	A.E. 5000.4400.0004	EN 55032:2015
EIVIC CE	AE 50384190 0001	EN 55024:2010
		EN 55024:2010+A1
'FCC	WTF14F0514417E	47 CFR PART 15 OCT., 2013
FDA	/	CDRH 1040.10
ROHS	1	2011/65/EU

Note2: The above certificate number updated to June 2018, because some certificate will be updated every year, such as FDA and ROHS. For the latest certification information, please check with Data Controls Inc..

Product Description

The JCXXXX-XFP-LC.S80 series optical transceiver is designed for fiber communications application such as SONET OC-192, STM-64, 10G Ethernet (10GBASE-ZR/ZW) and 10G Fiber Channel (1200-SM-LL-L), which fully compliant with the specification of XFP MSA Rev 4.5.

This module is designed for single mode fiber and operates at a nominal wavelength of CWDM wavelength. There are four center wavelengths available from 1470nm to 1610nm, with each step 20nm.

The module is with the XFP 30-pin connector to allow hot plug capability. Only single 3.3V power supply is needed. The optical output can be disabled by LVTTL logic high-level input of TX_DIS. Loss of signal (RX_LOS) output is provided to indicate the loss of an input optical signal of receiver.

This module provides digital diagnostic functions via a 2-wire serial interface as defined by the XFP MSA Rev 4.5.

Absolute Maximum Ratings

Parameter	Symbol	Min	Typical	Max	Unit	Note
Maximum Supply Voltage	Vcc	-0.5		4.0	V	
Storage Temperature	Ts	-40		85	°C	
Case Operating	т.	-5		70	°C	
Temperature	Tc	-5		70	10	
Maximum Input Power	Pm			-8	dBm	

Recommend Operating Condition

Parameter	Symbol	Min	Typical	Max	Units	Note
Operating Temperature	Tc	-5		70	°C	
Supply Voltage1	Vcc3	3.13	3.3	3.45	V	
Supply Voltage2	Vcc5	4.75	5	5.25	V	
Supply Current1	Icc3			300	mA	
Supply Current2	Icc5			750	mA	
Module Total Power	Р			3.5	W	

Electrical Characteristics

 $(T_C = -5 \text{ to } 70^{\circ}\text{C}, V_{CC} = 3.15 \text{ to } 3.45\text{V})$

Parameter	Symbol	Min	Typical	Max	Unit	Note	
Transmitter							
Input Differential Impedance	Rin		100		Ω	1	
Differential Data Input Swing	Vin, pp	180		820	mV		
Transmit Disable Voltage	V_{DIS}	2.0		Vcc	V		
Transmit Enable Voltage	V_{EN}	GND		GND+ 0.8	V		
Transmit Disable Assert Time				10	us		
		Receiver					
Differential Data Output Swing	Vout, pp	340	650	850	mV		
Data Output Rise Time	tr			38	ps	2	
Data Output Fall Time	tf			38	ps	2	
LOS Fault	$V_{\text{LOS fault}}$	V _{cc - 0.5}		$V_{cc\ HOST}$	V	3	
LOS Normal	$V_{LOS\ norm}$	GND		GND+0.5	V	3	
Power Supply Rejection	PSR	See Note 4 below			4		

Notes:

- 1. After internal AC coupling.
- 2. 20 80 %.
- Loss of Signal is open collector to be pulled up with a 4.7k 10kohm resistor to 3.15 3.6V.
 Logic 0 indicates normal operation; logic 1 indicates no signal detected.
- 4. Reference the Section 2.7 of the XFP MSA Rev 4.5.

Optical Characteristics

 $(T_C = -5 \text{ to } 70^{\circ}\text{C}, V_{CC} = 3.15 \text{ to } 3.45\text{V})$

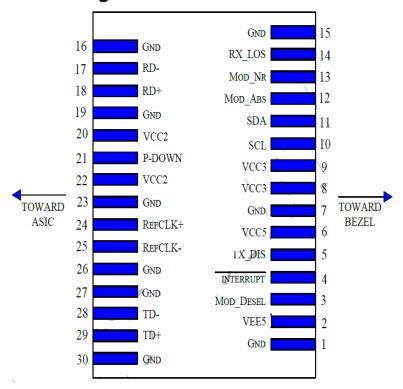
Parameter	Symbol	Min	Typical	Max	Unit	Note		
Transmitter								
Output Opt. Pwr: 9/125 SMF	Pout	0		4	dBm	1		
Optical Extinction Ratio	ER	8.2			dB			
Optical Wavelength	λ	λс–6	λс	λc+7.5	nm	2		
-20dB Spectrum Width	Δλ			1	nm			
Side Mode Suppression Ratio	SMSR	30			dB			
Average Launch Power of OFF Transmitter	P _{OFF}			-30	dBm			
TX Jitter	TXj	Per 802.3ae requirements						
Relative Intensity Noise	RIN	IN		-135	dB/Hz			
		Receiver						
Receiver Sensitivity @ 10.3125Gb/s	Pmin I		-24	dBm	3			
Overload Power	Pmax	-10			dBm			
Optical Center Wavelength	λ	1260		1600	nm			
Receiver Reflectance	Rrf			-12	dB			
LOS De-Assert	LOSD			-25	dBm			
LOS Assert	LOSA	-35			dBm			
LOS Hysteresis		1			dB			

Notes:

- 1. Output power is coupled into a 9/125µm SMF.
- 2. ITU-T G.694.2 CWDM wavelength from 1470nm to 1610nm, each step 20nm.
- 3. Average received power; BER less than 1E-12, PRBS 2³¹-1 test pattern.

Pin Descriptions

Pin	Logic	Symbol	Name/Description	Notes
1		GND	Module Ground	1
2		VEE5	Optional –5.2 Power Supply – Not Required	
			Module De-select; When held low allows the	
3	LVTTL-I	Mod-Desel	module to respond to 2-wire serial interface	
			commands	
			/Interrupt; Indicates presence of an important	
4	LVTTL-O	/Interrupt	condition which can be read over the serial 2-wire	2
			interface	
5	LVTTL-I	TX_DIS	Transmitter Disable; Transmitter laser source	
3	LV11L-1	TX_DIS	turned off	
6		VCC5	+5 Power Supply – Not Required	
7		GND	Module Ground	1
8		VCC3	+3.3V Power Supply	
9		VCC3	+3.3V Power Supply	
10	LVTTL-I	SCL	Serial 2-wire interface clock line	2
11	LVTTL-	SDA	Serial 2-wire interface data line	2
11	I/O	SDA	Serial 2-wife interface data line	2
12	LVTTL-O	Mod_Abs	Module Absent; Indicates module is not present.	2
12	LVIIL-O	WOU_ADS	Grounded in the module.	۷
13	LVTTL-O	Mod_NR	Module Not Ready;	2
14	LVTTL-O	RX_LOS	Receiver Loss of Signal indicator	2
15		GND	Module Ground	1
16		GND	Module Ground	1
17	CML-O	RD-	Receiver inverted data output	
18	CML-O	RD+	Receiver non-inverted data output	
19		GND	Module Ground	1
20		VCC2	+1.8V Power Supply – Not required	
			Power Down; When high, places the module in	
			the low power stand-by mode and on the falling	
21	LVTTL-I	P_Down/R	edge of P_Down initiates a module reset	
21		ST	Reset; The falling edge initiates a complete reset	
			of the module including the 2-wire serial interface,	
			equivalent to a power cycle.	
22		VCC2	+1.8V Power Supply – Not required	
23		GND	Module Ground	1
24	PFCI -I	RefCl K±	Reference Clock non-inverted input, AC coupled	3
24	4 PECL-I RefCLK+		on the host board – Not required	3
25	PECL-I	RefCLK-	Reference Clock inverted input, AC coupled on	3
20	1 202 1	Keicly-	the host board – Not required	


XFP Series

26		GND	Module Ground	1
27		GND	Module Ground	1
28	CML-I	TD-	Transmitter inverted data input	
29	CML-I	TD+	Transmitter non-inverted data input	
30		GND	Module Ground	1

Notes:

- 1. Module circuit ground is isolated from module chassis ground within the module.
- 2. Open connect should be pulled up with 4.7k 10k ohm on host board to a voltage between 3.15V and 3.6V.
- 3. A Reference Clock input is not required.

Pin Arrangement

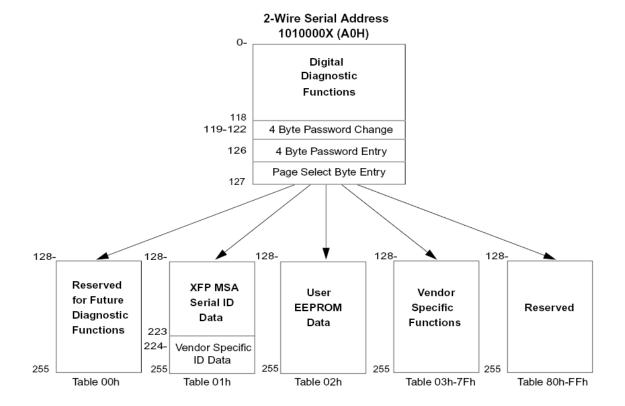
General Specifications

Parameter	Symbol	Min	Typical	Max	Units	Note
Bit Rate	BR	9.95		11.1	Gb/s	
Bit Error Ratio	BER			10 ⁻¹²		1

Notes:

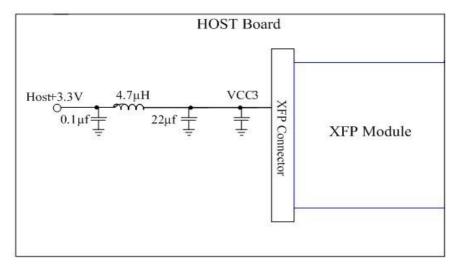
1. Tested 9.95G with 231 – 1 PRBS pattern.

Digital Diagnostic Functions

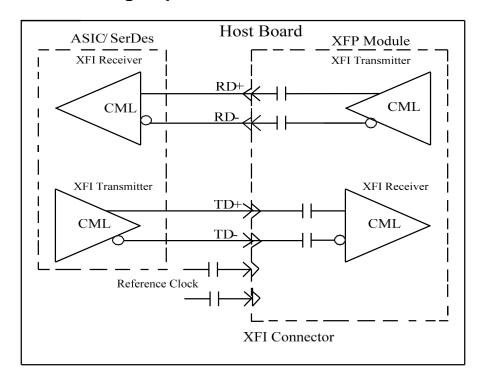

Data Controls Inc.'s Small Form Factor 10Gbps (XFP) transceiver is compliant with the current XFP Multi-Source Agreement (MSA) Specification Rev 4.5.

As defined by the XFP MSA, Data Controls Inc. XFP transceivers provide digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters:

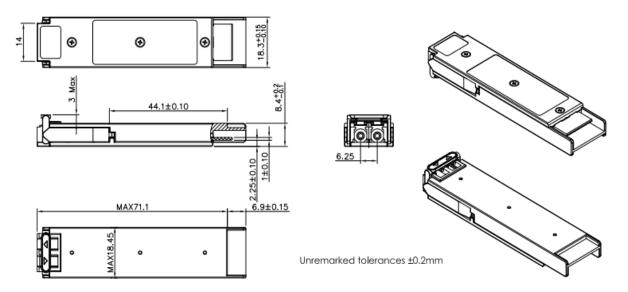
- ◆ Transceiver temperature
- Laser bias current
- Transmitted optical power
- Received optical power
- Aux Monitoring


It also provides a sophisticated system of alarm and warning flags, which may be used to alert end-users when particular operating parameters are outside of a factory-set normal range.

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller inside the transceiver, which is accessed through the 2-wire serial interface. The serial data signal (SDA pin) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. The 2-wire serial interface provides sequential or random access to the 8 bit parameters, addressed from 00h to the maximum address of the memory.



Recommended Host Board Power Supply Circuit


Recommended High-Speed Interface Circuit

Mechanical Specifications

Data Controls Inc.'s XFP transceivers are compliant with the dimensions defined by the XFP Multi-Sourcing Agreement (MSA).

*This 2D drawing only for reference, please check with Data Controls Inc. before ordering.

Eye Safety

This single-mode transceiver is a Class 1 laser product. It complies with IEC-60825 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated within the specified temperature and voltage limits. The optical ports of the module shall be terminated with an optical connector or with a dust plug.

Obtaining Document

You can visit our website: https://www.dci.jp

Or contact Data Controls Inc.. Listed at the end of the documentation to get the latest documents.

Revision History

Revision	Revision History	Release Date
V3.a	Released.	Oct 8, 2018

Notice:

Data Controls Inc. reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance. Applications that are described herein for any of the optical link products are for illustrative purposes only. Data Controls Inc. makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Contact:

E-mail: info@dci.jp
Web:https://www.dci.jp